Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer.

نویسندگان

  • G Divita
  • R S Goody
  • D C Gautheron
  • A Di Pietro
چکیده

The intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1 is a very sensitive probe to differentiate nucleotide binding to catalytic and noncatalytic sites (Divita, G., Di Pietro, A., Roux, B., and Gautheron, D. C. (1992) Biochemistry 31, 5791-5798), the catalytic site saturation producing quenching of Trp-257 fluorescence (Divita, G., Jault, J.-M., Gautheron, D. C., and Di Pietro, A. (1993) Biochemistry 32, 1017-1024). The present results indicate that two types of fluorescent nucleotide analogues, bearing either 2'(3')N-methylanthraniloyl (mant) or 2',3'-O-(2,4,6-trinitrophenyl) (TNP) group, exhibit high-affinity binding and behave similarly to the corresponding unmodified nucleotides. Selective binding of mant GDP to the catalytic site produces a marked quenching of intrinsic fluorescence which is due to resonance energy transfer between Trp-257 and the mant group. The high efficiency of the transfer allows the determination of a short distance, 10.5 A, indicating the close proximity of catalytic site and alpha-subunit Trp-257. Selective saturation of the noncatalytic site by TNP-ADP produces a marked quenching of the extrinsic fluorescence of mant GDP bound to the catalytic site, which is correlated to an important resonance energy transfer between the two fluorescent groups. A rather short distance of 17.5 A is calculated, indicating vicinity of catalytic and noncatalytic sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site.

ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F(1) subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, with widely differing affinities for MgATP or MgADP. During rotational catalysis, the sites switch their affinities. The affinity of each site is determined by the position of the cen...

متن کامل

Adenine nucleotide binding sites on beef heart F1 ATPase: photoaffinity labeling of beta-subunit Tyr-368 at a noncatalytic site and beta Tyr-345 at a catalytic site.

2-Azidoadenine [32P]nucleotide was bound specifically at catalytic or noncatalytic nucleotide binding sites on beef heart mitochondrial F1 ATPase. In both cases, photolysis resulted in nearly exclusive labeling of the beta subunit. The modified enzyme was digested with trypsin, and labeled peptides were purified by reversed-phase high-pressure liquid chromatography. Amino acid sequence analysis...

متن کامل

Nucleotide binding sites on beef heart mitochondrial F1-ATPase. Cooperative interactions between sites and specificity of noncatalytic sites.

We have studied the properties of beef heart mitochondrial F1 having inhibitory MgADP bound at one of the three catalytic sites and various levels of occupancy of the three noncatalytic nucleotide sites including zero, two, or three ADP/ATPs or two ADP/ATP plus one GTP. The properties examined include the rate of MgATP-dependent reactivation and the rate of increase in the fraction of F1 contai...

متن کامل

Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin.

Tentoxin, a natural cyclic tetrapeptide produced by phytopathogenic fungi from the Alternaria species affects the catalytic function of the chloroplast F(1)-ATPase in certain sensitive species of plants. In this study, we show that the uncompetitive inhibitor tentoxin binds to the alphabeta-interface of the chloroplast F(1)-ATPase in a cleft localized at betaAsp-83. Most of the binding site is ...

متن کامل

Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III.

Fluorescence resonance energy transfer was used for measuring the distances between the following three sites of purified yeast cytochrome c oxidase: (a) a highly reactive sulfhydryl group on the mitochondrially made Subunit II; (b) endogenous heme a; (c) cytochrome c bound to the mitochondrially made Subunit III. Subunit II of purified cytochrome c oxidase was stoichiometrically and covalently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 18  شماره 

صفحات  -

تاریخ انتشار 1993